
Author Contact information

Anton Bobrov Wargaming.net

Mikhail Paulyshka XVM team mixail@modxvm.com

Andrey Andruschyshyn Individual

The Koreanrandom.com community

World of Tanks: Mod Packages
version 0.5, 2017-10-12

World of Tanks 9.20.1

License: CC BY-SA 4.0

1. General Information
A package is a method of arranging modification files. According to the method, all content of a
particular modification is packed into a single file.

In case of using the old file distribution scheme, modifications are installed into the following
folder <WoT_game_folder>/res_mods/<WoT_version>/ . According to this scheme, files of

different modifications are located in the same folders, thus it is rather difficult to find files of a
particular modification.

The package method will make arrangement of modification files far less complicated: to install
a modification, a player simply needs to copy a package to the folder <

WoT_game_folder>/mods/<WoT_version>/ , or remove the same file to uninstall the modification.

2. Package Structure
A package is a zip-archive with the following features:

no compression
extension: .wotmod

the maximum archive size: 2 Gb - 1 byte (2 147 483 647 bytes)

NOTE: compressed archives are not supported in the current version of World of Tanks, thus
set the compression level to “without compression” when creating archives.

NOTE: 2 Gb archives and larger are not supported in the current version of World of Tanks, thus
they should be split into archives smaller than 2 Gb - 1 byte.

A package contains the following:

mailto:mixail@modxvm.com
https://creativecommons.org/licenses/by-sa/4.0/

required: the /res/ folder. A modification content is located in this folder, i.e., the very

files that used to be installed in the following folder: <	

WoT_game_folder>/res_mods/<WoT_version>

optional: utility file meta.xml (view section 5)

optional: file LICENSE containing a license agreement

optional: any other content that a modification developer might need: link to the
modification web page, documents, change list, etc.

Example of a package structure:

	

3. Installing a Package
Packages are to be installed in the following folder: <WoT_game_folder>/mods/<WoT_version> .

They can either be copied manually, or installed via a special installer file that contains a
particular modification or a pack of modifications.

If required, packages can be split into sub-folders, which allows developers to arrange files in
particular groups:

	

4. Recommendations on Naming
Packages

We recommend using the following scheme when creating a package identifier (hereinafter
package_id):

/package.wotmod
															/meta.xml
															/README.md
															/LICENSE
															/res
																			/scripts
																											/client
																																		/gui
																																						/mods
																																											/mod_example.pyc
														

mods/
				0.9.17.1/
												MultiHitLog_2.8.wotmod
												DamagePanel/
																								Some_common_library_3.14.5.wotmod
																								DamagePanel_2.6.wotmod
																								DamagePanel_2.8.wotmod
																								DamagePanel_2.8_patch1.wotmod

	

Where:

author_id : a developer identifier. It can be either a developer’s inverted domain

(com.example) or the developer’s nickname (noname)

mod_id : a modification identifier. It is selected at developer’s discretion.

Package identifier is used in the <id> field of the meta.xml file (view section 5) and as a part

of the package file name..

Examples of package identifiers:

com.example.coolmod ;

noname.supermod .

A package name is created according to the following scheme:

	

Where:

mod_version : modification version, specified by the modification developer in the

<version> field of the meta.xml file (view section 5).

Examples of file names:

com.example.coolmod_0.1.wotmod ;

noname.supermod_0.2.8.wotmod .

5. Metadata File meta.xml
The meta.xml optional file contains special fields for describing a modification.

Example:

	

package_id	=	author_id.mod_id

<author_id>.<mod_id>_<mod_version>.wotmod

<root>
				<!--	Package	identifier	-->
				<id>noname.crosshair</id>

				<!--	Package	version	-->
				<version>0.2.8</version>

				<!--	Package	name	clear	for	players	-->
				<name>Crosshair</name>

				<!--	Package	description	-->
				<description>New	cool	Crosshair	with	feature1.....N</description>
</root>

Values specified in the <id> and <version> fields are used for determining the order of

loading packages. Values specified in the <name> and <description> fields will subsequently

be used in the modification management system.

6. Loading Packages

6.1 Order of Loading

All packages located in the <WoT_game_folder>/mods/<WoT_version>/ folder are sorted by the

<id> node value specified in the meta.xml file and are loaded according to this order. If the

meta.xml file is missing, the file name will be used as the package identifier.

The load_order.xml file can be used for changing the order of loading. It should be located in

the abovementioned folder.

If all packages are specified in the load_order.xml file, they are loaded according to the order

set in the file.

If some packages are not specified in the load_order.xml file, packages specified in

load_order.xml are loaded first. The rest of the packages are loaded in alphabetical order.

6.2 Using Packages Together with the res_mods
Folder

From the point of the game client, the virtual system root is formed of:

/res_mods/<WoT_version>

/mods/<WoT_version>/<package_name>.wotmod/res/

/res/packages/*.pkg/

/res/

Other locations specified in the <WoT_game_folder>/paths.xml file

These paths are listed descending by priority. I.e., files located in the
/res_mods/<WoT_version>/ folder have higher priority regardless of the load_order.xml file.

6.3 Resolving Conflicts that Occur upon Loading

Generally, the package method does allow a situation, when identical files are located within
different packages in the res/ folder. Such situations are considered to be conflicts.

If a conflict is detected, the conflicted package is not loaded, a corresponding is displayed to the
user.

In other words, if both packages a.wotmod and b.wotmod contain the

res/scripts/entities.xml file, the a.wotmod package will be loaded successfully, while the

b.wotmod package will cause a conflict and thus will not be loaded.

Use the following to handle conflicts:

1. The load_order.xml file

The load_order.xml file should be located in the following folder:

<WoT_game_folder>/mods/<WoT_version>/ . It is formed in the following way:

	

Packages specified in this file are not regarded as conflicts. They are loaded without checking
for identical names. A package file specified at the end has the highest priority.

2. Values of the <id> and <version> nodes from meta.xml

If the <id> node is specified in the meta.xml file, names of package files are not considered in

the loading order. Packages that have identical <id> values, are regarded as different versions

or parts of one modification. Conflicts between such elements are not considered. They are
loaded in the version order (versions are specified in the <version> node).

Packages versions are compared by characters according to the ASCII table. The behavior is
similar to the behavior of the following function: strcmp():

version 9.0.0 has a higher priority than version 10.0.0 ;

version b has a higher priority than version B ;

version c<any	characters> has a higher priority than version c ;

if versions are identical, packages are loaded in the alphabetical order.

If different packages contain files with identical names, and the conflicts they cause are
resolved with the load_order.xml or meta.xml files, the file from the most recently added

package has a higher priority.

6.4 Executing Python Code

After adding all packages and resolving conflicts, all .pyc files with names starting from mod_

located the /scripts/client/gui/mods/ folder are executed in alphabetical order.

Within a package, this file should be located here:

	

<root>
				<Collection>
								<pkg>package1_name.wotmod</pkg>
								<pkg>package2_name.wotmod</pkg>
								<!--	...	-->
								<pkg>packageN_name.wotmod</pkg>
				</Collection>
</root>

<author_id>.
<mod_id>_<version>.wotmod/res/scripts/client/gui/mods/mod_<anything>.pyc

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strcmp-wcscmp-mbscmp

7. Recommended Paths for
Modification Files

7.1 Configuration Files

Modification configuration files are recommended to be located here:

	

Where:

author_id и mod_id - identifiers described in section 4 of this document.

7.2 Log Files

Apart from the python.log standard file, it is recommended to use the following path:

	

Where:

author_id и mod_id - identifiers described in section 4 of this document.

7.3 Temporary Files

Temporary files are recommended to be located here:

	

Where:

temp - path to a folder containing temporary files for a current user in the OS;

author_id и mod_id - identifiers described in section 4 of this document.

7.4 Other Modification Files

Use the following path to store content that should be accessible in the game client:

	

Where:

author_id и mod_id - identifiers described in section 4 of this document.

<WoT_game_foler>/mods/configs/<author_id>.<mod_id>/

<WoT_game_folder>/mods/logs/<author_id>.<mod_id>/

<temp>/world_of_tanks/<author_id>.<mod_id>/

<package_name>.wotmod/res/mods/<author_id>.<mod_id>/

8. Working with Files within Packages
Use the ResMgr module for working with files within packages.

8.1 Standard Operations

8.1.1 Reading a File from a Package

	

8.1.2 Obtaining a List of Elements in a Folder

	

8.1.3 Copying a File from a Package to a Folder

#import
import	ResMgr

#function
def	read_file(vfs_path,	read_as_binary=True):
				vfs_file	=	ResMgr.openSection(vfs_path)
				if	vfs_file	is	not	None	and	ResMgr.isFile(vfs_path):
								if	read_as_binary:
												return	str(vfs_file.asBinary)
								else:
												return	str(vfs_file.asString)
				return	None

#example	
myscript	=	read_file('scripts/client/gui/mods/mod_mycoolmod.pyc')

#import	
import	ResMgr

#function	
def	list_directory(vfs_directory):
				result	=	[]
				folder	=	ResMgr.openSection(vfs_directory)
				
				if	folder	is	not	None	and	ResMgr.isDir(vfs_directory):
								for	name	in	folder.keys():
												if	name	not	in	result:
																result.append(name)
				
				return	sorted(result)

#example	
content	=	list_directory('scripts/client/gui/mods/')

	

9. Known Issues

9.1 Executing .py files

Issue description

Currently, '.py' files located inside a package cannot be executed.

Temporary solution

A package should contain both .py files and compiled into bytecode .pyc files.

9.2 Partial support of the ZIP format

Issue description

Currently, it is impossible to use .wotmod files that do not have the ZIPDIRENTRY and

ZIPFILERECORD structures for all folders inside the archive.

Temporary solution

Use compatible archivers for creating archives, for example:

7-Zip http://7-zip.org ;
Info-ZIP http://info-zip.org/ .

Attachment А. Change-list

v 0.5 (2017-10-12)

#import	
import	os
import	ResMgr

#function	
def	file_copy(vfs_from,	realfs_to)
				realfs_directory	=	os.path.dirname(realfs_to)
				if	not	os.path.exists(realfs_directory):
								os.makedirs(realfs_directory)

				vfs_data	=	file_read(vfs_from)	#view	8.1.1
				if	vfs_data:
								with	open(realfs_to,	'wb')	as	realfs_file:
												realfs_file.write(vfs_data)

#example	
file_copy('scripts/client/gui/mods/mod_my.pyc','res_mods/0.9.17.1/scripts/client/g
ui/mods/mod_my.pyc')

http://7-zip.org/
http://info-zip.org/

Points 9.2 and 9.3 removed (fixed in World of Tanks 9.20.1)
Added the description of the issue related to partial support of the ZIP format.

v 0.4 (2017-05-04)

reworked description of resolving package conflicts with the load_order.xml file.

v 0.3 (2017-05-03)

added information on restrictions to the .wotmod file formats;

supplemented description of resolving conflicts for packages with identical identifiers

v 0.2 (2017-04-10)

reworked design: new layout, separation into articles
reworked description of the package naming scheme
reworked description of the package loading order
added recommendations concerning the locations of logs and configuration files
added examples of the source code for working with files within packages
added description of currently known issues

v 0.1 (2017-01-13)

First version.

	World of Tanks: Mod Packages
	1. General Information
	2. Package Structure
	3. Installing a Package
	4. Recommendations on Naming Packages
	5. Metadata File meta.xml
	6. Loading Packages
	6.1 Order of Loading
	6.2 Using Packages Together with the res_mods Folder
	6.3 Resolving Conflicts that Occur upon Loading
	6.4 Executing Python Code

	7. Recommended Paths for Modification Files
	7.1 Configuration Files
	7.2 Log Files
	7.3 Temporary Files
	7.4 Other Modification Files

	8. Working with Files within Packages
	8.1 Standard Operations
	8.1.1 Reading a File from a Package
	8.1.2 Obtaining a List of Elements in a Folder
	8.1.3 Copying a File from a Package to a Folder

	9. Known Issues
	9.1 Executing .py files
	9.2 Partial support of the ZIP format

	Attachment А. Change-list
	v 0.5 (2017-10-12)
	v 0.4 (2017-05-04)
	v 0.3 (2017-05-03)
	v 0.2 (2017-04-10)
	v 0.1 (2017-01-13)

