
World of Tanks: Mod Packages
version 0.2, 2017-04-10

Anton Bobrov, Wargaming.net
Mikhail Paulyshka, XVM team
Andrey Andruschyshyn, Independent
Koreanrandom.com community

License: CC BY-SA 4.0

1. General Information
A package is a method of arranging modification files. According to the method, all content of a particular
modification is packed into a single file.

In case of using the old file distribution scheme, modifications are installed into the following folder
<WoT_game_folder>/res_mods/<WoT_version>/ . According to this scheme, files of different modifications are

located in the same folders, thus it is rather difficult to find files of a particular modification.

The package method will make arrangement of modification files far less complicated: to install a
modification, a player simply needs to copy a package to the folder <
WoT_game_folder>/mods/<WoT_version>/ , or remove the same file to uninstall the modification.

2. Package Structure
A package is a zip-archive without compression with the .wotmod extension.

NOTE: compressed archives are not supported in the current version of World of Tanks, thus set the
compression level to “without compression” when creating archives.

A package contains the following:

required: the /res/ folder. A modification content is located in this folder, i.e., the very files that used
to be installed in the following folder: < WoT_game_folder>/res_mods/<WoT_version>
optional: utility file meta.xml (view section 5)
optional: file LICENSE containing a license agreement
optional: any other content that a modification developer might need: link to the modification web
page, documents, change list, etc.

Example of a package structure:

af://n0
https://creativecommons.org/licenses/by-sa/4.0/
af://n21
af://n28

/package.wotmod
 /meta.xml
 /README.md
 /LICENSE
 /res
 /scripts
 /client
 /gui
 /mods
 /mod_example.pyc

3. Installing a Package
Packages are to be installed in the following folder: <WoT_game_folder>/mods/<WoT_version> . They can either
be copied manually, or installed via a special installer file that contains a particular modification or a pack of
modifications.

If required, packages can be split into sub-folders, which allows developers to arrange files in particular
groups:

mods/
 0.9.17.1/
 MultiHitLog_2.8.wotmod
 DamagePanel/
 Some_common_library_3.14.5.wotmod
 DamagePanel_2.6.wotmod
 DamagePanel_2.8.wotmod
 DamagePanel_2.8_patch1.wotmod

4. Recommendations on Naming Packages
We recommend the following scheme of naming a package (hereinafter package_id):

package_id = author_id.mod_id

Where:

author_id : a developer identifier. It can be either a developer’s web site (com.example) or the
developer’s nickname (noname)
mod_id : a modification identifier. It is selected at developer’s discretion.

This name is used in the meta.xml file (view section 5) and as a part of the package file name.

Example of package names:

com.example.coolmod
noname.supermod

af://n51
af://n57

A file name is formed in the following way:

<author_id>.<mod_id>_<mod_version>.wotmod

Where:

mod_version : modification version, set by the modification developer in meta.xml (view section 5).

Examples:

com.example.coolmod_0.1.wotmod
noname.supermod_0.2.8.wotmod

5. Metadata File meta.xml
The meta.xml optional file contains special fields for describing a modification.

Example:

Values specified in these fields will subsequently be used in the modification management system.

6. Loading Packages

6.1 Order of Loading

All packages located in the <WoT_game_folder>/mods/<WoT_version>/ folder are sorted by the <id> node
value specified in the meta.xml file and are loaded according to this order. If the meta.xml file is missing,
the file name will be used as the package identifier.

The load_order.xml file can be used for changing the order of loading. It should be located in the
abovementioned folder.

If all packages are specified in the load_order.xml file, they are loaded according to the order set in the file.

If some packages are not specified in the load_order.xml file, packages specified in load_order.xml are
loaded first. The rest of the packages are loaded in alphabetical order.

<root>
 <!‐‐ Techical MOD ID ‐‐>
 <id>noname.crosshair</id>

 <!‐‐ Package version ‐‐>
 <version>0.2.8</version>

 <!‐‐ Human readable name ‐‐>
 <name>Crosshair</name>

 <!‐‐ Human readable description ‐‐>
 <description>New cool Crosshair with feature1.....N</description>
</root>

af://n87
af://n95
af://n96

NOTE: currently, it is rather difficult to use the load_orders.xml file (view section 9.4).

6.2 Using Packages Together with the res_mods Folder

From the point of the game client, the virtual system root is formed of:

/res_mods/<WoT_version>

/mods/<WoT_version>/<package_name>.wotmod/res/

/res/packages/*.pkg/

/res/

Other locations specified in the <WoT_game_folder>/paths.xml file

These paths are listed descending by priority. I.e., files located in the /res_mods/<WoT_version>/ folder have
higher priority regardless of the load_order.xml file.

6.3 Resolving Conflicts that Occur upon Loading

Generally, the package method does allow a situation, when identical files are located within different
packages in the res/ folder. Such situations are considered to be conflicts.

If a conflict is detected, the conflicted package is entirely excluded from processing. In such a manner, a
corresponding notification is displayed to the user.

In other words, if both packages a.wotmod and b.wotmod contain the res/scripts/entities.xml file, the
a.wotmod package will be loaded successfully, while the b.wotmod will cause a conflict and thus will not be

loaded.

Use the following to handle conflicts:

1. The load_order.xml file. Packages specified in this file are not regarded as conflicts. They are loaded
without checking for identical names.

2. The <id> node value from meta.xml . Packages that have identical <id> values, are regarded as
different versions or parts of one modification. Conflicts between such elements are not considered.

If different packages contain files with identical names, and the conflicts they cause are resolved with the
load_order.xml or meta.xml files, the file from the most recently added package has a higher priority.

6.4 Executing Python Code

After adding all packages and resolving conflicts, all .pyc files with names starting from mod_ located the
/scripts/client/gui/mods/ folder are executed in alphabetical order.

Within a package, this file should be located here:

<author_id>.<mod_id>_<version>.wotmod/res/scripts/client/gui/mods/mod_<anything>.pyc

7. Recommended Paths for Modification Files

7.1 Configuration Files

af://n107
af://n128
af://n146
af://n154
af://n155

Modification configuration files are recommended to be located here:

<WoT_game_foler>/mods/configs/<author_id>.<mod_id>/

Where:

author_id и mod_id - identifiers described in section 4 of this document.

7.2 Log Files

Apart from the python.log standard file, it is recommended to use the following path:

<WoT_game_folder>/mods/logs/<author_id>.<mod_id>/

Where:

author_id и mod_id - identifiers described in section 4 of this document.

7.3 Temporary Files

Temporary files are recommended to be located here:

<temp>/world_of_tanks/<author_id>.<mod_id>/

Where:

temp - path to a folder containing temporary files for a current user in the OS;

author_id и mod_id - identifiers described in section 4 of this document.

7.4 Other Modification Files

Use the following path to store content that should be accessible in the game client:

<package_name>.wotmod/res/mods/<author_id>.<mod_id>/

Where:

author_id и mod_id - identifiers described in section 4 of this document.

8. Working with Files within Packages
Use the ResMgr module for working with files within packages.

8.1 Standard Operations

8.1.1 Reading a File from a Package

af://n165
af://n175
af://n189
af://n199
af://n202
af://n203

8.1.2 Obtaining a List of Elements in a Folder

8.1.3 Copying a File from a Package to a Folder

#import
import ResMgr

#function
def read_file(vfs_path, read_as_binary=True):
 vfs_file = ResMgr.openSection(vfs_path)
 if vfs_file is not None and ResMgr.isFile(vfs_path):
 if read_as_binary:
 return str(vfs_file.asBinary)
 else:
 return str(vfs_file.asString)
 return None

#example
myscript = read_file('scripts/client/gui/mods/mod_mycoolmod.pyc')

#import
import ResMgr

#function
def list_directory(vfs_directory):
 result = []
 folder = ResMgr.openSection(vfs_directory)

 if folder is not None and ResMgr.isDir(vfs_directory):
 for name in folder.keys():
 if name not in result:
 result.append(name)

 return sorted(result)

#example
content = list_directory('scripts/client/gui/mods/')

af://n205
af://n207

9. Known Issues

9.1 Case-Sensitive File Names

Issue Description

Currently, when adding files to the virtual file system:

files from packages are added in the lower-case
files from the <WoT_game_folder>/res_mods/ folder are added as they are

As a result, if a file is located both in a package and in the res_mods folder, and the file name contains at
least one upper-case letter, the file may load twice.

Temporary Solution

Use only lower-case letters for names of files and folders located in the <WoT_game_folder >/res_mods
folder.

9.2 Working with the GNU Gettext Files

Issue Description

Currently it is impossible to assign the .mo files in a package instead of the .mo files located in the
<WoT_game_folder>/res/text/LC_MESSAGES/ folder.

Temporary Solution

Use net.openwg.vfsgettext as a temporary solution:

http://openwg.net/download/vfsgettext/net.openwg.vfsgettext_1.0.0.wotmod

9.3 Executing the .py Files

#import
import os
import ResMgr

#function
def file_copy(vfs_from, realfs_to)
 realfs_directory = os.path.dirname(realfs_to)
 if not os.path.exists(realfs_directory):
 os.makedirs(realfs_directory)

 vfs_data = file_read(vfs_from) #view 8.1.1
 if vfs_data:
 with open(realfs_to, 'wb') as realfs_file:
 realfs_file.write(vfs_data)

#example
file_copy('scripts/client/gui/mods/mod_my.pyc','res_mods/0.9.17.1/scripts/client/gui/mods/mod_my.
pyc')

af://n209
af://n210
af://n228
http://openwg.net/download/vfsgettext/net.openwg.vfsgettext_1.0.0.wotmod
af://n239

Issue Description

Currently, the .py files located in a package cannot be executed.

Temporary Solution

Add the compiled into byte code .pyc files to a package, in addition to the .py files.

9.4 Changing the Order of Loading Packages

Issue Description

Currently, it is impossible to change the order of loading packages using the load_order.xml file.

Temporary Solution

There is no temporary solution to the issue. The issue is going to be resolved soon.

Attachment А. Change-list

v 0.2 (2017-04-10)

reworked design: new layout, separation into articles
reworked description of the package naming scheme
reworked description of the package loading order
added recommendations concerning the locations of logs and configuration files
added examples of the source code for working with files within packages
added description of currently known issues

v 0.1 (2017-01-13)

First version

af://n248
af://n259
af://n260
af://n280

	World of Tanks: Mod Packages
	1. General Information
	2. Package Structure
	3. Installing a Package
	4. Recommendations on Naming Packages
	5. Metadata File meta.xml
	6. Loading Packages
	6.1 Order of Loading
	6.2 Using Packages Together with the res_mods Folder
	6.3 Resolving Conflicts that Occur upon Loading
	6.4 Executing Python Code

	7. Recommended Paths for Modification Files
	7.1 Configuration Files
	7.2 Log Files
	7.3 Temporary Files
	7.4 Other Modification Files

	8. Working with Files within Packages
	8.1 Standard Operations
	8.1.1 Reading a File from a Package
	8.1.2 Obtaining a List of Elements in a Folder
	8.1.3 Copying a File from a Package to a Folder

	9. Known Issues
	9.1 Case-Sensitive File Names
	9.2 Working with the GNU Gettext Files
	9.3 Executing the .py Files
	9.4 Changing the Order of Loading Packages

	Attachment А. Change-list
	v 0.2 (2017-04-10)
	v 0.1 (2017-01-13)

